Journal of Organometallic Chemistry, 319 (1987) 411-422 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

# ADDITION OF $C_2(CO_2Me)_2$ TO *trans*-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub>. FORMATION AND ISOMERIZATION OF MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub>[ $C_2(CO_2Me)_2$ ], AND CRYSTAL STRUCTURE OF THE THERMODYNAMIC ISOMER

WAYNE M. REES, MELVYN ROWEN CHURCHILL<sup>\*</sup>, JAMES C. FETTINGER and JIM D. ATWOOD<sup>\*,\*</sup>

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY14214 (U.S.A.) (Received June 30th, 1986)

#### Summary

The reaction of  $C_2(CO_2Me)_2$  with trans-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> leads to a kinetic isomer which has been characterized by <sup>1</sup>H and <sup>31</sup>P NMR and infrared spectra and to a thermodynamic isomer which has been characterized by <sup>1</sup>H and <sup>31</sup>P NMR, infrared, microanalysis and X-ray crystallography. The isomerization occurs readily in solution at room temperature; somewhat more slowly at  $-20^{\circ}$ C. The thermodynamically stable isomer of  $MeIr(CO)(PPh_3)_2[C_2(CO_2Me)_2]$  crystallizes in the centrosymmetric monoclinic space group  $P2_1/c$  with a 14.847(2), b 16.648(2), c 15.656(3) Å,  $\beta$  90.595(14)°, V 3869.7(11) Å<sup>3</sup> and Z = 4. Single-crystal X-ray diffraction data were collected with a Syntex P2<sub>1</sub> automated diffractometer (Mo- $K_{\alpha}$ radiation,  $2\theta$  5-40°) and the structure was solved and refined to  $R_F$  8.6% for all 3631 independent data ( $R_F$  4.0% for those 2318 data with  $|F_o| > 6\sigma(|F_o|)$ ). The Ir<sup>I</sup> center has a trigonal-bipyramidal environment with the methyl ligand and one PPh<sub>2</sub> ligand occupying axial sites (Ir-Me 2.193(14), Ir-P(1) 2.425(4) Å). The  $C_2(CO_2Me)_2$  ligand is  $\pi$ -bonded to the iridium atom and lies with its triple bond parallel to the equatorial coordination plane; the equatorial ligands are completed by the second PPh<sub>3</sub> ligand (Ir-P(2) 2.402(3) Å) and a CO ligand (Ir-CO 1.812(15) Å).

Acetylene complexes are important in many oligomerization and polymerization reactions [1]. A step of potential importance is the insertion of an alkyne into a metal carbon sigma bond. Our recent synthesis of *trans*-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> allows possible modeling of this step by reaction with alkynes [2].

<sup>\*</sup> Alfred P. Sloan Foundation Fellow.

Transition metal alkyne chemistry has been investigated a number of years and reviewed extensively [1,3–6]. These reviews have centered on the preparations, reactions and structures of alkyne complexes. The majority of acetylene complexes involve metal–metal bonded systems or nickel group (Group 10) metals. Reaction of acetylene complexes are often quite complicated with the specific reactions observed depending on subtle factors. Addition of acetylene to "PtL<sub>2</sub>CH<sub>3</sub><sup>+</sup>" was shown to give different products (see eq. 1) depending on the nature of the acetylene, the ligands L, the solvent and the reaction conditions [7–10].

trans-PtCl(CH<sub>3</sub>)L<sub>2</sub> + RC=CR' 
$$\xrightarrow{Ag^+}$$
 [Pt(CH<sub>3</sub>)(RC=CR')L<sub>2</sub>]  $\rightarrow$  products (1)

Our high-yield synthesis of the sixteen-electron methyl complex, *trans*-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> which readily adds acetylene molecules, allows further study of the possible interaction of a methyl group with coordinated acetylene [2]. In this paper we report the reaction of *trans*-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> with  $C_2(CO_2Me)_2$  (eq. 2), *trans*-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> +  $C_2(CO_2Me)_2 \rightarrow MeIr(CO)(PPh_3)_2[C_2(CO_2Me)_2]$  (2) which leads to a kinetic isomer and a thermodynamic isomer. Both isomera have

which leads to a kinetic isomer and a thermodynamic isomer. Both isomers have been characterized and their structures assigned.

## Experimental

Iridium trichloride was generously loaned by Johnson Matthey Inc. All solvents were dried and degassed prior to use. Infrared spectra were recorded on a Beckman 4240 infrared spectrophotometer and <sup>1</sup>H NMR spectra were recorded on a Varian EM 390 or on a JEOL FX 90Q. *Trans*-Ir(PPh<sub>3</sub>)<sub>2</sub>(CO)Cl and *trans*-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> were prepared as previously described [2,11].

## Synthesis of the kinetic isomer of $MeIr(CO)(PPh_3)_2[C_2(CO_2Me)_2]$

In an inert atmosphere glove box 0.20 g of *trans*-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> were placed in a Schlenk flask, sealed, brought out of the box, flushed with N<sub>2</sub> and immersed in a  $-20^{\circ}$ C bath. The acetylene (4.0 ml of a  $7 \times 10^{-2}$  *M* solution in benzene) was added to the chilled flask while flushing with N<sub>2</sub>. The resulting pale yellow suspension was stirred for 15 min at  $-20^{\circ}$ C and pentane (20 ml) slowly added. The resulting mixture was stirred for an additional 5 min. The pale yellow solid was collected by suction filtration and washed (3 × 5 ml) with pentane. The yield was 0.16 g (67%). The infrared spectrum in KBr is: 1945vs (assigned to C=O stretch), 1750m-br (assigned to C=C stretch) and 1680s cm<sup>-1</sup> (assigned to C=O stretch) and the <sup>1</sup>H NMR ( $-20^{\circ}$ C) spectrum is: 6.99(m) (assigned to PPh<sub>3</sub>), 3.22(s) and 3.04(s) (assigned to OCH<sub>3</sub>'s) and 1.25(t) ppm J(P-H) 5.3 Hz (assigned to Ir–CH<sub>3</sub>). The <sup>31</sup>P NMR (proton decoupled) at  $-20^{\circ}$ C in toluene-d<sub>8</sub> shows a singlet at 7.67 ppm (reference H<sub>3</sub>PO<sub>4</sub>).

# Synthesis of the thermodynamic isomer of $MeIr(CO)(PPh_3)_2[C_2(CO_3Me)_2]$

In an inert atmosphere glove box 0.20 g trans-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> and 4.0 ml of a  $7 \times 10^{-2}$  M benzene solution of C<sub>2</sub>(CO<sub>2</sub>Me)<sub>2</sub> (1.08 equiv.) were allowed to stir for 4 h at room temperature. The solution was evaporated to dryness and the resulting solid chromatographed on an alumina column (1/1 benzene/THF). The first band

(golden-yellow) was collected and evaporated to dryness to yield 0.17 g (72%) of air-stable yellow powder. Diffraction grade crystals may be prepared by slowly chilling (first to 0°C, then to -20°C) a saturated solution of MeIr(CO)-(PPh<sub>3</sub>)<sub>2</sub>[C<sub>2</sub>(CO<sub>2</sub>Me)<sub>2</sub>] in toluene/hexane (70/30) for 24 h. Microanalysis: Found: C, 58.48; H, 4.37; P, 6.94. calc: C, 58.59; H, 4.33; P, 6.88%. Infrared (KBr): 1975vs (C=O), 1781m-br (C=C), 1688s and 1678s cm<sup>-1</sup> (C=O). <sup>1</sup>H NMR (20°C): 7.0(m) (PPh<sub>3</sub>) 3.46(s) and 3.31(s) (O-CH<sub>3</sub>'s) and 0.60 ppm (dd) J(P-H) 5.9 and J(P-H) 7.9 Hz. <sup>31</sup>P NMR ( $-20^{\circ}$ C): 0.24(d), J(P-P) 8.3 Hz and -6.04(d) ppm, J(P-P) 8.3 Hz.

# Collection of diffraction data

The crystal chosen for the X-ray structural analysis was a yellow transparent parallelepiped having approximate orthogonal dimensions of  $0.1 \times 0.2 \times 0.2$  mm<sup>3</sup>. The crystal was sealed into a thin-walled glass capillary under an inert atmosphere (Ar) since it seemed probable that it might be sensitive to air or moisture. The crystal was aligned accurately on a Syntex P2<sub>1</sub> automated four-circle diffractometer. Subsequent set-up operations and collection of the X-ray diffraction data were carried out as described previously [13]; details appear in Table 1. The observed diffraction symmetry ( $C_{2h}$ , 2/m) and the systematic absences (h0l for l = 2n + 1; 0k0 for k = 2n + 1) indicated that the crystal belonged to the centrosymmetric monoclinic space group  $P2_1/c$  ( $C_{2h}^5$ ; No. 14).

All data were corrected for the effects of absorption and for Lorentz and polarization factors and were converted to unscaled  $|F_0|$  values. Any reflection (*Continued on p. 416*)

### TABLE 1

#### CRYSTALLOGRAPHIC DATA FOR MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub>[C<sub>2</sub>(CO<sub>2</sub>Me)<sub>2</sub>]

| Crystal parameters at 24°C (297 K)   |                                                 |
|--------------------------------------|-------------------------------------------------|
| Crystal system: monoclinic           | Formula: C44H39IrO5P2                           |
| Space group: $P2_1/c$ (No. 14)       | Molec. wt.: 901.95                              |
| a 14.847(2) Å                        | Z = 4                                           |
| b 16.648(2) Å                        | $D(\text{calc}) \ 1.55 \text{ g cm}^{-3}$       |
| c 15.656(3) Å                        | $\mu$ (Mo- $K_{\alpha}$ ) 37.9 cm <sup>-1</sup> |
| β 90.595(14) <sup>°</sup>            |                                                 |
| V 3869.7(11) Å <sup>3</sup>          |                                                 |
| Collection of X-ray diffraction data |                                                 |

Diffractometer: Syntex P2<sub>1</sub> Radiation: Mo- $K_{\alpha}$  ( $\overline{\lambda}$  0.710730 Å) Monochromator: Highly oriented (pyrolytic) graphite,  $2\theta$ (m) 12.160° for 002 reflection; equatorial mode; assumed 50% perfect/50% ideally mosaic for polarization correction Reflections measured: +h, +k,  $\pm l$  for  $2\theta = 5.0-40.0^{\circ}$ ; 4119 reflections merged to 3631 unique data Scan-type: coupled  $\theta$ (crystal)- $2\theta$ (counter) Scan-speed:  $2.50^{\circ}$ /min Scan width:  $[2\theta(K_{\alpha_1})-1.0]-[2\theta(K_{\alpha_2})+1.0]^{\circ}$ Backgrounds: stationary-crystal and stationary-counter; measured at each end of the  $2\theta$  scan (each for one-half total scan time) Standards: 3 remeasured after each batch of 97 reflections; no significant fluctuations observed

FINAL POSITIONAL AND ANISOTROPIC THERMAL PARAMETERS FOR MeIr(CO)- $(PPh_3)_2[C_2(CO_2Me)_2]$ 

| Atom         | x           | у             | Z            | B <sub>iso</sub> |
|--------------|-------------|---------------|--------------|------------------|
| Ir           | 0.26384(4)  | 0.04994(3)    | 0.22997(3)   |                  |
| <b>P</b> (1) | 0.15749(25) | 0.01517(21)   | 0.34051(21)  |                  |
| P(2)         | 0.25092(23) | -0.06535(21)  | 0.13839(21)  |                  |
| C(1)         | 0.1828(11)  | 0.11370(90)   | 0.17548(92)  |                  |
| O(1)         | 0.13380(75) | 0.16003(67)   | 0.13991(69)  |                  |
| C(2)         | 0.3690(10)  | 0.09618(90)   | 0.14578(86)  |                  |
| C(3)         | 0.5049(13)  | -0.1035(11)   | 0.4471(11)   |                  |
| O(3)         | 0.42850(71) | -0.05226(72)  | 0.41526(65)  |                  |
| C(4)         | 0.4489(12)  | 0.0020(11)    | 0.3552(10)   |                  |
| O(4)         | 0.52526(81) | 0.01202(68)   | 0.33049(70)  |                  |
| C(5)         | 0.37028(92) | 0.0477(11)    | 0.32054(80)  |                  |
| C(6)         | 0.3337(10)  | 0.11793(91)   | 0.31860(85)  |                  |
| C(7)         | 0.3441(10)  | 0.2002(10)    | 0.3501(10)   |                  |
| 0(7)         | 0.30991(81) | 0.25729(64)   | 0.31654(70)  |                  |
| O(8)         | 0.39904(68) | 0.20257(59)   | 0.41722(67)  |                  |
| C(8)         | 0.4110(13)  | 0.28260(95)   | 0.4549(10)   |                  |
| C(11)        | 0.04200(76) | 0.04504(79)   | 0.31873(72)  | 3.05(25)         |
| C(12)        | 0.00299(94) | 0.03166(80)   | 0.23836(84)  | 4.20(32)         |
| C(13)        | -0.0839(10) | 0.0553(10)    | 0.21875(87)  | 5.19(34)         |
| C(14)        | -0.1359(10) | 0.09349(91)   | 0.2784(10)   | 5.26(37)         |
| C(15)        | -0.1004(10) | 0.10635(89)   | 0.3564(10)   | 5.06(36)         |
| C(16)        | -0.0134(10) | 0.08186(84)   | 0.37948(88)  | 4.69(35)         |
| C(21)        | 0.18524(80) | 0.06699(76)   | 0.43975(76)  | 3.29(28)         |
| C(22)        | 0.17496(91) | 0.14987(84)   | 0.44485(86)  | 4.12(32)         |
| C(23)        | 0.1963(10)  | 0.19060(92)   | 0.5196(10)   | 5.32(37)         |
| C(24)        | 0.2276(11)  | 0.1523(11)    | 0.5888(11)   | 6.59(42)         |
| C(25)        | 0.2392(12)  | 0.0705(12)    | 0.5871(11)   | 7.76(48)         |
| C(26)        | 0.2180(10)  | 0.02823(90)   | 0.5108(10)   | 5.61(39)         |
| C(31)        | 0.14786(85) | -0.08965(72)  | 0.37357(74)  | 2.72(27)         |
| C(32)        | 0.0684(10)  | -0.12492(86)  | 0.39341(85)  | 4.34(33)         |
| C(33)        | 0.0668(11)  | -0.2060(10)   | 0.4167(10)   | 5.74(39)         |
| C(34)        | 0.1426(11)  | -0.2503(10)   | 0.4175(10)   | 5.71(39)         |
| C(35)        | 0.2252(11)  | -0.21691(94)  | 0.39667(94)  | 5.41(37)         |
| C(36)        | 0.22570(94) | -0.13414(85)  | 0.37506(85)  | 4.14(32)         |
| C(41)        | 0.28552(78) | -0.04494(82)  | 0.02761(72)  | 3.18(26)         |
| C(42)        | 0.3466(10)  | -0.09393(86)  | -0.01117(91) | 4.57(34)         |
| C(43)        | 0.3747(11)  | -0.0752(10)   | -0.0968(10)  | 5.90(41)         |
| C(44)        | 0.3377(11)  | - 0.01267(95) | -0.1374(10)  | 5.31(37)         |
| C(45)        | 0.2795(10)  | -0.03793(92)  | -0.10047(91) | 5.12(35)         |
| C(46)        | 0.25350(92) | 0.02019(81)   | -0.01739(89) | 4.34(33)         |
| C(51)        | 0.31823(84) | -0.15513(76)  | 0.16791(75)  | 3.02(28)         |
| C(52)        | 0.2946(10)  | -0.23144(88)  | 0.13668(86)  | 4.47(33)         |
| C(53)        | 0.3501(11)  | -0.29562(93)  | 0.1578(10)   | 5.55(38)         |
| C(54)        | 0.4230(12)  | -0.2847(11)   | 0.2065(10)   | 6.56(42)         |
| C(55)        | 0.4525(11)  | -0.2119(11)   | 0.2339(10)   | 6.73(43)         |
| C(56)        | 0.3969(10)  | -0.14513(94)  | 0.21051(93)  | 5.30(37)         |
| C(61)        | 0.13773(85) | -0.10780(75)  | 0.12284(79)  | 3.07(29)         |
| C(62)        | 0.08145(91) | - 0.08381(77) | 0.05491(81)  | 3.79(31)         |
| C(63)        | -0.0070(10) | -0.11197(88)  | 0.05003(92)  | 4.80(36)         |
| C(64)        | -0.0390(10) | -0.16100(91)  | 0.11053(93)  | 4.82(35)         |
| C(65)        | 0.0132(10)  | -0.18872(85)  | 0.17535(91)  | 4.76(34)         |
| C(66)        | 0.10273(90) | -0.16116(81)  | 0.18176(81)  | 3.81(30)         |

TABLE 2 (continued)

| Atom  | x               |                        | у               | Ζ                      |                 | B <sub>iso</sub>       |
|-------|-----------------|------------------------|-----------------|------------------------|-----------------|------------------------|
| H(12) | (               | ).0374                 | 0.0054          | 0                      | .1958           | 6.0                    |
| H(13) | - (             | 0.1080                 | 0.0451          | 0                      | .1633           | 6.0                    |
| H(14) | - (             | ).1954                 | 0.1103          | 0                      | .2648           | 6.0                    |
| H(15) | (               | 0.1358                 | 0.1332          | 0                      | .3976           | 6.0                    |
| H(16) | (               | 0.0081                 | 0.0901          | 0                      | .4361           | 6.0                    |
| H(22) | (               | 0.1531                 | 0.1788          | 0                      | .3966           | 6.0                    |
| H(23) | (               | 0.1884                 | 0.2471          | 0                      | .5217           | 6.0                    |
| H(24) | (               | 0.2418                 | 0.1817          | 0                      | .6392           | 6.0                    |
| H(25) | (               | 0.2610                 | 0.0427          | 0                      | .6360           | 6.0                    |
| H(26) | (               | ).2267                 | -0.0282         | 0                      | .5089           | 6.0                    |
| H(32) | (               | 0.0142                 | -0.0947         | 0                      | .3914           | 6.0                    |
| H(33) | (               | 0.0114                 | -0.2301         | 0                      | .4322           | 6.0                    |
| H(34) | (               | ).1395                 | -0.3055         | 0                      | .4326           | 6.0                    |
| H(35) | (               | 0.2789                 | -0.2479         | 0                      | .3968           | 6.0                    |
| H(36) | (               | 0.2811                 | -0.1089         | 0                      | .3613           | 6.0                    |
| H(42) | (               | 0.3702                 | -0.1395         | 0                      | .0178           | 6.0                    |
| H(43) | (               | ).4189                 | -0.1071         | -0                     | .1241           | 6.0                    |
| H(44) | (               | 0.3533                 | -0.0035         | - 0                    | .1952           | 6.0                    |
| H(45) | 0               | 0.2570                 | 0.0838          | - 0                    | .1297           | 6.0                    |
| H(46) | (               | 0.2115                 | 0.0547          | 0                      | .0095           | 6.0                    |
| H(52) | (               | ).2422                 | -0.2388         | 0                      | .1021           | 6.0                    |
| H(53) | (               | 0.3358                 | -0.3478         | 0                      | .1372           | 6.0                    |
| H(54) | (               | ).4565                 | -0.3307         | 0                      | .2231           | 6.0                    |
| H(55) | (               | 0.5063                 | -0.2056         | 0                      | .2664           | 6.0                    |
| H(56) | (               | ).4157                 | -0.0923         | 0                      | .2253           | 6.0                    |
| H(62) | (               | 0.1035                 | -0.0485         | 0                      | .0123           | 6.0                    |
| H(63) | -(              | 0.0448                 | -0.0962         | 0                      | .0036           | 6.0                    |
| H(64) | - (             | 0.1004                 | -0.1768         | 0                      | .1077           | 6.0                    |
| H(65) | - (             | ).0099                 | -0.2258         | 0                      | .2156           | 6.0                    |
| H(66) | (               | ).1399                 | -0.1795         | 0                      | .2274           | 6.0                    |
| Atom  | B <sub>11</sub> | <b>B</b> <sub>22</sub> | B <sub>33</sub> | <b>B</b> <sub>12</sub> | B <sub>13</sub> | <b>B</b> <sub>23</sub> |
| Ir    | 3.215(26)       | 2.384(24)              | 2.402(24)       | -0.216(30)             | 0.092(17)       | 0.053(27)              |
| P(1)  | 3.48(19)        | 2.89(18)               | 2.48(16)        | 0.17(15)               | 0.26(15)        | 0.04(14)               |
| P(2)  | 3.21(18)        | 3.00(20)               | 2.93(17)        | 0.13(15)               | 0.09(14)        | -0.28(15)              |
| C(1)  | 5.3(10)         | 3.63(88)               | 3.79(84)        | -0.61(73)              | 0.23(71)        | -0.22(65)              |
| O(1)  | 6.65(73)        | 5.40(68)               | 6.46(68)        | 0.26(57)               | -0.32(56)       | 1.92(54)               |
| C(2)  | 5.20(88)        | 6.02(90)               | 3.90(77)        | -2.01(73)              | 1.36(67)        | 0.61(67)               |
| C(3)  | 8.9(12)         | 7.4(11)                | 9.0(12)         | 3.3(10)                | -5.8(10)        | 2.60(91)               |
| O(3)  | 7.33(68)        | 6.17(62)               | 5.09(57)        | - 1.00(66)             | -1.09(52)       | 0.70(60)               |
| C(4)  | 3.75(94)        | 6.9(11)                | 3.48(85)        | -1.19(91)              | -0.23(79)       | -2.18(78)              |
| O(4)  | 5.22(67)        | 7.87(76)               | 6.77(68)        | 1.36(58)               | -0.58(58)       | 0.89(55)               |
| C(5)  | 3.41(80)        | 5.20(94)               | 3.78(72)        | -1.41(83)              | - 0.53(60)      | -0.09(77)              |
| C(6)  | 4.62(87)        | 2.83(81)               | 3.75(79)        | -0.58(71)              | 1.03(63)        | -0.61(64)              |
| C(7)  | 3.22(81)        | 4.2(10)                | 4.65(92)        | 0.53(72)               | 0.26(72)        | -0.84(77)              |
| O(7)  | 9.93(85)        | 2.92(57)               | 7.57(72)        | 0.98(57)               | -3.13(63)       | 0.05(50)               |
| O(8)  | 5.11(60)        | 5.21(63)               | 6.11(61)        | 0.09(48)               | - 2.08(53)      | -1.03(50)              |
| C(8)  | 11.0(14)        | 4.38(93)               | 7.6(11)         | -1.41(91)              | -1.7(10)        | -4.11(82)              |

 $\frac{C(8)}{a} \frac{11.0(14)}{11.0(14)} \frac{4.38(93)}{4.38(93)} \frac{7.6(11)}{7.6(11)} \frac{-1.41(91)}{-1.7(10)} \frac{-1.7(10)}{-4.11(82)} \frac{-4.11(82)}{-4.11(82)}$ The anisotropic thermal parameters enter the expression for the calculated structure factor in standard XTL format, viz., exp[-0.25( $h^2a^{\star 2}B_{11} + ... + 2hka^{\star}b^{\star}B_{12} + ...)$ ].

with I(net) < 0 was assigned the value  $|F_0| = 0$ . Data were placed on an approximately absolute scale by means of a Wilson plot.

# Solution and refinement of the structure of $MeIr(CO)(PPh_3)_2[C_2(CO_2Me)_2]$

All calculations were performed on our locally-modified version of the Syntex XTL interactive crystallographic program package [14]. Throughout the analysis the calculated structure factors were based upon the analytical expression for the neutral atoms' scattering factors; both the real  $(\Delta f')$  and imaginary  $(i\Delta f'')$  components of anomalous dispersion were included for all non-hydrogen atoms [15].

The position of the iridium atom was quickly and unambiguously determined from a Patterson map. All remaining non-hydrogen atoms were located from a subsequent difference-Fourier map. The structure was refined by a least-squares refinement procedure, minimizing the function  $\Sigma w(|F_o| - |F_c|)^2$  where  $1/w = {[\sigma(|F_o|)]^2 + [0.015|F_o|]^2}$ . All phenyl hydrogens were included in their idealized positions based upon d(C-H) 0.95 Å [16] and trigonal planar geometry about carbon. Refinement of positional and anisotropic thermal parameters for all non-hydrogen atoms led to final convergence [17] with  $R_F$  8.6,  $R_{wF}$  5.0% and GOF = 1.24for 289 parameters refined against all 3631 independent data. [Residuals for those 2774 data with  $|F_o| > 3\sigma(|F_o|)$  were  $R_F$  5.4 and  $R_{wF}$  4.5%; for those 2318 data with  $|F_o| > 6\sigma(|F_o|)$ ,  $R_F$  4.0 and  $R_{wF}$  3.9%.] As can be seen from these statistics, the diffraction data were rather weak, with only 63.8% being above  $6\sigma(|F_o|)$  (i.e.,  $3\sigma(I)$ ) in intensity. Data collection was terminated at  $2\theta = 40^\circ$  for this reason.

A final difference-Fourier map revealed possible positions for two of the three hydrogen atoms of the methyl ligand; this aspect was not further pursued. No other significant peaks were discernible. The structure is thus correct. Final positional parameters and anisotropic thermal parameters appear in Table 2.

A minor correction for the effects of secondary extinction was included using eq. 3; the value determined for g was  $9.64 \times 10^{-8}$ .

$$|F_{o,corr}| = |F_{o,uncorr}|(1.0 + gI_o)$$
(3)

## **Results and discussion**

The acetylene complex,  $MeIr(CO)(PPh_3)_2[C_2(CO_2Me)_2]$ , is readily formed by addition of the acetylene to the sixteen-electron methyl complex (eq. 2). The initial kinetic product which can be isolated at -20 °C, slowly isomerizes to the thermodynamic product at room temperature. The isomerization can be followed by infrared spectral changes or by <sup>1</sup>H and <sup>31</sup>P NMR. The kinetic isomer shows equivalent triphenylphosphines (CH<sub>3</sub> is a triplet in <sup>1</sup>H NMR and a singlet is observed for the <sup>31</sup>P NMR), while the thermodynamic isomer has inequivalent triphenylphosphines (CH<sub>3</sub> is a doublet of doublets and two doublets are observed in the <sup>31</sup>P NMR). To better define the isomerization reaction and the structures of the kinetic and thermodynamic products, the structure of the thermodynamic product was determined.

## Description of the molecular structure of $MeIr(CO)(PPh_3), [C_2(CO_2Me)_2]$

The scheme used for labelling this molecule is shown in Fig. 1. Interatomic distances and angles are listed in Tables 3 and 4, while a stereoscopic view of the molecule is provided by Fig. 2.



Fig. 1. Labelling of atoms within the  $MeIr(CO)(PPh_3)_2[C_2(CO_2Me)_2]$  molecule. [ORTEP-II diagram, with all hydrogen atoms deleted.]

The central iridium(I) atom has a coordination environment somewhat distorted from an idealized trigonal bipyramidal geometry. The methyl group (defined by C(2)) and a triphenylphosphine ligand occupy the axial sites, with P(1)-Ir-C(2)170.3(4)°. The remaining triphenylphosphine ligand (bonded through atom P(2)) a carbonyl ligand (linked via C(1)) and the C<sub>2</sub>(CO<sub>2</sub>Me)<sub>2</sub> ligand (linked to iridium from "Cent", the mid-point of the C(5)-C(6) triple bond) complete the set of



Fig. 2. Stereoscopic view of the MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub>[ $C_2(CO_2Me)_2$ ] molecule.

| (A) Iridium – ligana | distances                |                      |           |
|----------------------|--------------------------|----------------------|-----------|
| Ir-P(1)              | 2.425(4)                 | Ir-C(2)              | 2.193(14) |
| Ir-P(2)              | 2.402(3)                 | Ir-C(5)              | 2.113(13) |
| Ir-C(1)              | 1.812(15)                | Ir-C(6)              | 2.063(14) |
| C(1)-O(1)            | 1.194(19)                | Ir-Cent <sup>a</sup> | 1.986     |
| (B) Phosphorus – ca  | rbon distances           |                      |           |
| P(1)-C(11)           | 1.814(12)                | P(2)-C(41)           | 1.846(12) |
| P(1)-C(21)           | 1.821(13)                | P(2)-C(51)           | 1.854(13) |
| P(1)-C(31)           | 1.826(12)                | P(2)-C(61)           | 1.837(13) |
| P-C(av.)             | $1.833 \pm 0.015$        |                      |           |
| (C) Distances within | $n C_2(CO_2Me)_2$ ligand |                      |           |
| C(3)-O(3)            | 1.501(21)                | C(8)-O(8)            | 1.467(19) |
| C(4)-O(3)            | 1.341(20)                | C(7)-O(8)            | 1.324(19) |
| C(4)-O(4)            | 1.213(21)                | C(7)-O(7)            | 1.196(19) |
| C(4)-C(5)            | 1.490(23)                | C(6)-C(7)            | 1.464(22) |
| C(5)-C(6)            | 1.290(23)                |                      |           |
| (D) $C-C$ distances  | in PPh 3 ligands         |                      |           |
| C(11)-C(12)          | 1.397(17)                | C(14)–C(15)          | 1.341(21) |
| C(12)-C(13)          | 1.380(20)                | C(15)-C(16)          | 1.398(21) |
| C(13)-C(14)          | 1.374(21)                | C(16)-C(11)          | 1.405(18) |
| C(21)-C(22)          | 1.391(19)                | C(24)-C(25)          | 1.373(26) |
| C(22)-C(23)          | 1.387(20)                | C(25)-C(26)          | 1.419(24) |
| C(23)-C(24)          | 1.336(23)                | C(26)-C(21)          | 1.371(20) |
| C(31)-C(32)          | 1.356(19)                | C(34)-C(35)          | 1.389(23) |
| C(32)-C(33)          | 1.399(22)                | C(35)-C(36)          | 1.419(21) |
| C(33)-C(34)          | 1.345(23)                | C(36)-C(31)          | 1.373(19) |
| C(41)-C(42)          | 1.367(19)                | C(44)-C(45)          | 1.342(21) |
| C(42)-C(43)          | 1.442(21)                | C(45)-C(46)          | 1.392(20) |
| C(43)-C(44)          | 1.335(22)                | C(46)-C(41)          | 1.375(19) |
| C(51)-C(52)          | 1.404(19)                | C(54)-C(55)          | 1.356(25) |
| C(52)-C(53)          | 1.387(21)                | C(55)-C(56)          | 1.430(23) |
| C(53)-C(54)          | 1.331(23)                | C(56)-C(51)          | 1.349(20) |
| C(61)-C(62)          | 1.404(18)                | C(64)-C(65)          | 1.352(20) |
| C(62)-C(63)          | 1.397(20)                | C(65)-C(66)          | 1.409(20) |
| C(63)-C(64)          | 1.341(21)                | C(66)-C(61)          | 1.386(18) |
| C-C(ay)              | $1.379 \pm 0.029$        |                      |           |

TABLE 3

INTERATOMIC DISTANCES (Å) FOR MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub>[C<sub>2</sub>(CO<sub>2</sub>Me)<sub>2</sub>]

" "Cent" is the midpoint of the triple bond C(5)-C(6).

equatorial ligands; angles of interest within the trigonal plane are P(2)-Ir-C(1) 98.0(5), P(2)-Ir-Cent 133.6 and C(1)-Ir-Cent 127.0°.

The axial and equatorial iridium-phosphorus distances are close to equivalent, with Ir-P(1) 2.425(4) and Ir-P(2) 2.402(3) Å. (A similar equivalence was found for  $(C_7H_8)(PMe_2Ph)_2Ir(SnCl_3)$  [18], but is neither expected nor required.) The equatorial alkyne ligand takes up the "parallel" conformation, with the initial triple bond, C(5)-C(6), lying in the equatorial trigonal coordination plane. This ligand appears to be slightly asymmetrically bound, with the Ir-C(5) distance of 2.113(13) Å being  $\sim 0.05$  Å (close to  $3\sigma$ ) longer than the Ir-C(6) distance of 2.063(14) Å. This could be due to (i) the stronger *trans* influence of the carbonyl ligand acting on C(5) versus the PPh<sub>3</sub> ligand (through P(2)) acting on C(6) and/or (ii) the greater

# TABLE 4

INTERATOMIC ANGLES (°) FOR MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub>[C<sub>2</sub>(CO<sub>2</sub>Me)<sub>2</sub>]

(A) Angles about the iridium atom

| P(1)-Ir-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100.76(12)             | C(1)-Ir-C(2)                     | 89.1(6)   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|-----------|
| P(1)-Ir-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92.4(5)                | C(1)-Ir-Cent <sup><i>a</i></sup> | 127.0     |
| P(1)-Ir-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170.3(4)               | C(2)-Ir-Cent "                   | 81.9      |
| P(1)-Ir-Cent <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.5                   | P(1)-Ir-C(5)                     | 90.3(4)   |
| P(2)-Ir-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98.0(5)                | P(1)-Ir-C(6)                     | 88.7(4)   |
| P(2) - Ir - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88.6(4)                | C(2) - Ir - C(5)                 | 83.0(6)   |
| $P(2)-Ir-Cent^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 133.6                  | C(2) - Ir - C(6)                 | 81.7(6)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | C(5)-Ir-C(6)                     | 36.0(6)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                  |           |
| (B) $Ir - P - C$ and $C - P - C$ and $L - P -$ | igles                  |                                  |           |
| Ir - P(1) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114.9(4)               | Ir - P(2) - C(41)                | 113.1(4)  |
| Ir - P(1) - C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.7(4)               | Ir - P(2) - C(51)                | 117.1(4)  |
| Ir - P(1) - C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.9(4)               | Ir - P(2) - C(61)                | 117.0(4)  |
| C(11) - P(1) - C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103.6(6)               | C(41) - P(2) - C(51)             | 103.2(6)  |
| C(11) - P(1) - C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103.8(6)               | C(41) - P(2) - C(61)             | 102.1(6)  |
| C(21)-C(1)-C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103.2(6)               | C(51)-P(2)-C(61)                 | 102.3(6)  |
| (C) $Ir - C - O$ angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                  |           |
| Ir - C(1) - O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 175.3(13)              |                                  |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                  |           |
| (D) Angles within $C_2(CO_2Me)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $)_2$ ligand           |                                  | 100.000   |
| C(3) = O(3) = C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.1(13)              | O(4) = C(4) = C(5)               | 123.0(15) |
| O(3) - C(4) - O(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.3(15)              | C(6) - C(7) - O(7)               | 123.5(14) |
| O(3) - C(4) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114.6(14)              | C(6) - C(7) - O(8)               | 110.9(13) |
| O(7) - C(7) - O(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125.5(14)              | C(4) - C(5) - C(6)               | 143.0(15) |
| C(7) = O(8) = C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114.6(12)              | C(5) - C(6) - C(7)               | 143.0(15) |
| Ir - C(5) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 146.2(11)              | Ir - C(6) - C(5)                 | 74.1(9)   |
| Ir - C(5) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.9(9)                | Ir - C(6) - C(7)                 | 142.3(11) |
| (E) $C-C-P$ angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                  |           |
| C(12)-C(11)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.5(9)               | C(42)-C(41)-P(2)                 | 120.0(10) |
| C(16) - C(11) - P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123.5(10)              | C(46) - C(41) - P(2)             | 121.9(10) |
| C(22)-C(21)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.7(10)              | C(52)-C(51)-P(2)                 | 120.7(10) |
| C(26) - C(21) - P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123.0(10)              | C(56) - C(51) - P(2)             | 119.0(10) |
| C(22)-C(31)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 123.3(10)              | C(62) - C(61) - P(2)             | 121.8(10) |
| C(26) - C(31) - P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116.9(10)              | C(66) - C(61) - P(2)             | 120.5(10) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                  | ( )       |
| (F) $C-C-C$ angles within PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h <sub>3</sub> ligands |                                  | 117 0/10  |
| C(12) - C(11) - C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 116.0(12)              | C(22) - C(21) - C(26)            | 117.3(12) |
| C(11)-C(12)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.2(13)              | C(21) - C(22) - C(23)            | 120.6(13) |
| C(12)-C(13)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.7(14)              | C(22) - C(23) - C(24)            | 121.7(15) |
| C(13)-C(14)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.3(14)              | C(23)-C(24)-C(25)                | 119.9(16) |
| C(14)-C(15)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.8(14)              | C(24) - C(25) - C(26)            | 118.9(16) |
| C(15)-C(16)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.9(13)              | C(25)-C(26)-C(21)                | 121.5(14) |
| C(32)-C(31)-C(36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.8(12)              | C(33)-C(34)-C(35)                | 121.3(15) |
| C(31)-C(32)-C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.7(13)              | C(34)-C(35)-C(36)                | 116.8(14) |
| C(32)-C(33)-C(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.0(15)              | C(35)-C(36)-C(31)                | 121.5(13) |
| C(42)-C(41)-C(46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.1(12)              | C(52)-C(51)-C(56)                | 119.7(12) |
| C(41)-C(42)-C(43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.9(13)              | C(51)-C(52)-C(53)                | 117.9(13) |
| C(42)-C(43)-C(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.2(14)              | C(52)-C(53)-C(54)                | 120.6(15) |
| C(43)-C(44)-C(45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123.3(15)              | C(53)-C(54)-C(55)                | 124.2(16) |
| C(44) - C(45) - C(46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 117.1(14)              | C(54)-C(55)-C(56)                | 115.5(15) |
| C(45)-C(46)-C(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123.3(13)              | C(55)-C(56)-C(51)                | 121.7(14) |
| C(62)-C(61)-C(66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117.5(12)              | C(63)-C(64)-C(65)                | 122.3(14) |
| C(61)-C(62)-C(63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.9(12)              | C(64)-C(65)-C(66)                | 118.4(13) |
| C(62)-C(63)-C(64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.4(14)              | C(65)-C(66)-C(61)                | 121.4(12) |

419

<sup>*a*</sup> "Cent" is the midpoint of the triple bond, C(5)-C(6).



Fig. 3. Possible structures for the kinetic isomer with the assumption that  $C_2(CO_2Me)_2$  remains in an equatorial position (ac =  $C_2(CO_2Me)_2$ , P = PPh<sub>3</sub>).

steric repulsion between the "C(5)-end" of the  $C_2(CO_2Me)_2$  ligand and the equatorial PPh<sub>3</sub> group as opposed to that between the "C(6)-end" of the  $C_2(CO_2Me)_2$  ligand and the CO ligand. The Ir-Cent distance is 1.986 Å and the acetylenic C(5)-C(6) linkage is expanded from ~ 1.20 to 1.290(23) upon coordination to the iridium(I) center. The acetylenic ligand has the *cis*-bent configuration, with C(4)-C(5)-C(6) 143.0(15) and C(5)-C(6)-C(7) 143.0(15)°. These values are all in accord with the accepted mode of acetylene-metal bonding, composed of  $\pi(acetylene) \rightarrow$  metal forward donation and metal  $\rightarrow$  acetylene ( $d_{\pi} \rightarrow \pi^*$ ) back donation. (The observed  $\nu(C \equiv C)$  is 1781 cm<sup>-1</sup>.)

The equatorial iridium-carbonyl distance (Ir-C(1) 1.812(15) Å) is almost 0.4 Å shorter than the iridium-methyl distance (Ir-C(2) 2.193(14) Å). Each of these is in good agreement with previously determined measurements. Thus, the Ir-Me distance can be compared with values of 2.202(22) Å in  $(C_8H_{12})(PPhMe_2)_2$ IrMe [19] 2.153(18) Å in  $(C_8H_{12})[Ph_2P(CH_2)_3PPh_2]$ IrMe [20] and 2.133(16) Å in  $(C_8H_{12})$ [Ph\_2P(CH\_2)\_2PPh\_2]IrMe [21]; each of these trigonal bipyramidal molecules also has the methyl ligand in an axial coordination site. Shapley and Osborn [22] have reviewed site preferences in fluxional pentacoordinate transition metal complexes and concluded that (in the absence of steric effects) ligands which are strong  $\pi$ -acceptors will preferentially take up equatorial sites and those which are strong



Fig. 4. NMR spectrum benzene- $d_6$  of the thermodynamic isomer of MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub>[C<sub>2</sub>(CO<sub>2</sub>Me)<sub>2</sub>].



Fig. 5. NMR spectrum  $(-20^{\circ}C, \text{ toluene-}d_8)$  of the kinetic isomer of MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub>[C<sub>2</sub>(CO<sub>2</sub>Me)<sub>2</sub>]. The resonances (a) are from the kinetic isomer while those marked (b) are from the thermodynamic isomer.

 $\sigma$ -donors will preferentially take up axial sites in trigonal-bipyramidal  $d^8$  structures. Calculations by Rossi and Hoffmann are in agreement with this conclusion [23]. The thermodynamic isomer fully conforms to the Shapley–Osborn preference rules.

Under the assumption that the acetylene occupies an equatorial site, there are three possibilities for the structure of the kinetic isomer (Fig. 3). Structure **A** is readily derived from the thermodynamic isomer by a pseudorotation holding the acetylene in the equatorial position. Structure **B** is derived by addition of the acetylene to *trans*-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> with a bending down of the PPh<sub>3</sub> groups. Such a structure is adopted by an olefin adduct of *trans*-MeIr(CO)(PPh<sub>3</sub>)<sub>2</sub> [24]. Structure **C** arises by bending of the CO and CH<sub>3</sub> groups toward each other upon addition of acetylene. The NMR (<sup>1</sup>H) spectra of both isomers are shown in Figs. 4 and 5. The NMR spectrum indicates equivalent PPh<sub>3</sub> groups (CH<sub>3</sub> is triplet) (confirmed by <sup>31</sup>P NMR data) and inequivalent OCH<sub>3</sub> groups (two singlets). Only structure **C** is consistent with the NMR spectral data.

Pentacoordinate species are often stereochemically non-rigid with very low activation barriers. The barrier for interconversion between the kinetic and thermodynamic isomer of  $MeIr(CO)(PPh_3)_2[C_2(CO_2Me)_2]$  must be at least 20-25 kcal/mol. While we have no direct mechanistic information on the interconversion, we note that several Berry-pseudorotations are required to convert between the two.

#### Supplementary Material Available

Tables of observed and calculated structure factors (15 pages) are available upon request from M.R.C.

#### Acknowledgment

We acknowledge the National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. J.D.A. acknowledges the Alfred P. Sloan Foundation for a fellowship. W.M.R. acknowledges the Graduate School of SUNY for a fellowship. A loan of  $IrCl_3 \cdot xH_2O$  was generously provided by Johnson Matthey Corp.

## References

- 1 S. Otsuka and A. Nakamura, Adv. Organomet. Chem., 14 (1976) 245.
- 2 W.M. Rees, M.R. Churchill, Y.-J. Li and J.D. Atwood, Organometallics, 4 (1985) 1162.
- 3 S.D. Ittel and J.A. Ibers, Adv. Organomet. Chem., 14 (1976) 42.
- 4 F.L. Bowden and A.B.P. Lever, Organomet. Chem. Rev., 3 (1968) 227.
- 5 F.R. Hartley, Chem. Rev., 69 (1969) 799.
- 6 R.F. Heck, Organotransition Metal Chemistry, Academic Press, New York, 1974.
- 7 T.G. Appleton, M.H. Chisholm and H.C. Clark, J. Am. Chem. Soc., 94 (1972) 8912.
- 8 M.H. Chisholm and H.C. Clark, Inorg. Chem., 10 (1971) 1711.
- 9 M.H. Chisholm and H.C. Clark, Inorg. Chem., 10 (1971) 2557.
- 10 M.H. Chisholm and H.C. Clark, J. Am. Chem. Soc., 94 (1972) 1532.
- 11 C.T. Sears and M. Kubota, Inorg. Synth., 11 (1968) 101.
- 12 J.P. Collman, J.W. Kang, W.F. Little, and M.F. Sullivan, Inorg. Chem., 7 (1968) 1298.
- 13 M.R. Churchill, R.A. Lashewycz, and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
- 14 Syntex XTL Operations Manual, Syntex Analytical Instruments, Cupertino, CA, (1976).
- 15 International Tables for X-Ray Crystallography, Volume 4, Kynoch Press, Birmingham, England, (1974): pp. 99-101 and 149-150.
- 16 M.R. Churchill, Inorg. Chem., 12 (1973) 1213.
- 17 Discrepancy indices are defined as follows.  $R_F$  (%) = 100 $\Sigma$ ||  $F_o$  | - |  $F_c$  || $\Sigma$ |  $F_o$  |;  $R_{wF}$  (%) = 100[ $\Sigma w$ (|  $F_o$  | - |  $F_c$  |) $^2/\Sigma w$ |  $F_o$  | $^2$ ]<sup>1/2</sup>;  $GOF = [\Sigma w$ (|  $F_o$  | - |  $F_c$  |) $^2/(NO - NV)$ ]<sup>1/2</sup>,
- where NO = number of observations and NV = number of parameters varied.
- 18 M.R. Churchill, and K.-K.G. Lin, J. Am. Chem. Soc., 96 (1974) 76.
- 19 M.R. Churchill and S.A. Bezman, Inorg. Chem., 11 (1972) 2243.
- 20 M.R. Churchill and S.A. Bezman, Inorg. Chem., 12 (1973) 531.
- 21 M.R. Churchill and S.A. Bezman, Inorg. Chem., 12 (1973) 260.
- 22 J.R. Shapley and J.A. Osborn, Acc. Chem. Res., 6 (1973) 305.
- 23 A.R. Rossi and R. Hoffmann, Inorg. Chem., 14 (1975) 365.
- 24 M.R. Churchill, J.C. Fettinger, W.M. Rees, and J.D. Atwood, J. Organomet. Chem., 301 (1986) 99.